天才一秒记住【雅盛书屋】地址:yasheng2.com
完全数之谜
公元前3世纪时,古希腊数学家在对数的因数分解中,发现了有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。
发现完全数
研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6。
古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。
约公元前300年,几何大师欧几里得在他的巨著《几何原本》第九章最后一个命题首次给出了寻找完全数的方法,被誉誉(yu):名誉,称赞。为欧几里得定理:“如果2n—1是一个素数,那么自然数2n—1(2n—1)一定是一个完全数。”并给出了证明。
公元1世纪,毕达哥拉斯学派成员、古希腊著名数学家尼可马修斯在他的数论专著《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。
神秘的第五个完全数
完全数在古希腊诞生后,吸引着众多数学家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。
直到1202年才出现一线曙光。意大利的斐斐:fei。波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集搜集(souji):到处寻找(事物)并聚集在一起。的数学,写出了名著《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找完全数的有效法则,可惜没有人共鸣,成为过眼烟云。
1460年,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑迷惑(mihuo):辨不清是非;摸不着头脑,使迷惑。不解了。
不平凡的研究历程
16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位著名数学家。他研究发现:当n=2和n=3至39的奇数时,2n—1(2n—1)是完全数。
17世纪“神数术”大师庞格斯在一本洋洋700页的巨著《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。
1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数216(217—17)和218(219—1)但他又错误地认为222(223)—1、228(229—1)和236(237—1)也是完全数。这三个数后来被大数学家费马和欧拉否定了。
1644年,法国神甫兼大数学家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2n—1(2n—1)是完全数,同时又增加了n=67,127和257。
在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是著名的“梅森猜测”。
“梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱莱:lai。布尼兹也认为是对的。他们低估了完全数的难度。
更多内容加载中...请稍候...
本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!
《未解知识之谜》转载请注明来源:雅盛书屋yasheng2.com,若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!